Week 7 - Friday

COMP 2100

Last time

- What did we talk about last time?
- 2-3 trees and red-black tree practice

Questions?

Project 2

Infix to Postfix Converter

AVL Trees

AVL trees

- Another approach to balancing is the AVL tree
 - Named for its inventors G.M. Adelson-Velskii and E.M. Landis
 - Invented in 1962
- An AVL tree is better balanced than a red-black tree, but it takes more work to keep such a good balance
 - It's faster for finds (because of the better balance)
 - It's slower for inserts and deletes
 - Like a red-black tree, all operations are $\Theta(\log n)$

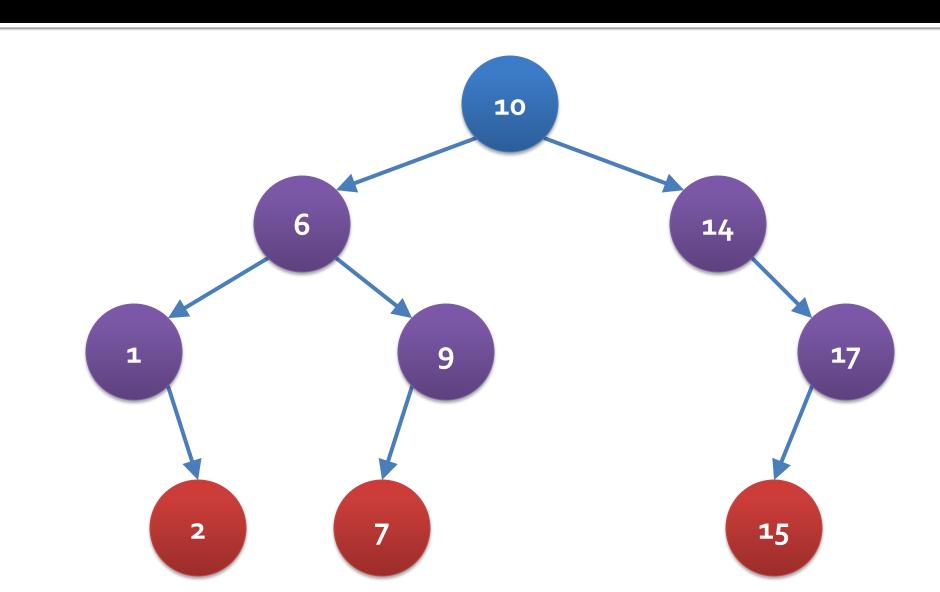
AVL definition

An AVL tree is a binary search tree where

 The left and right subtrees of the root have heights that differ by at most one

The left and right subtrees are also AVL trees

AVL tree?

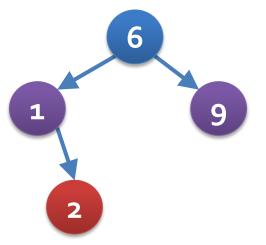


Balance factor

 The balance factor of a tree (or subtree) is the height of its right subtree minus the height of its left

■ In an AVL tree, the balance factor of **every** subtree is -1, o, or

+1

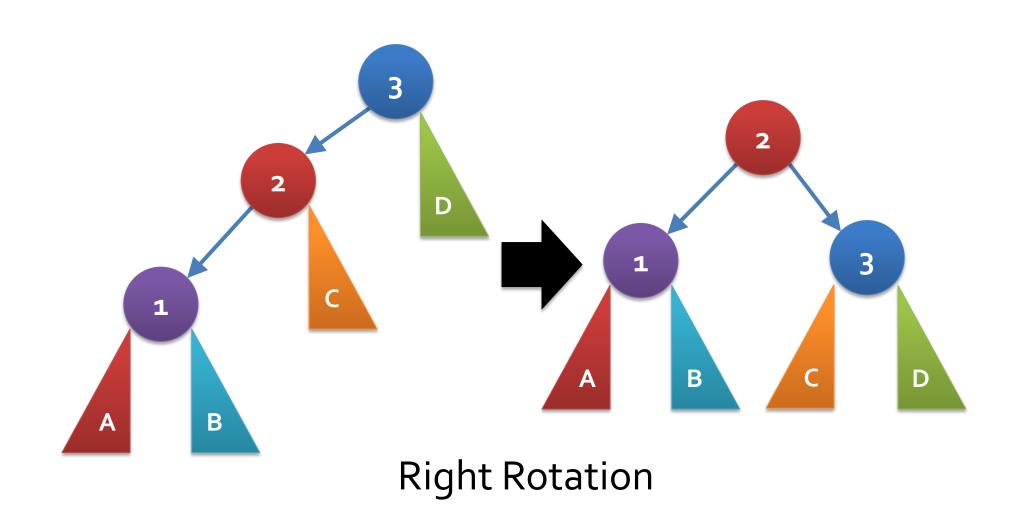


What's the balance factor of this tree?

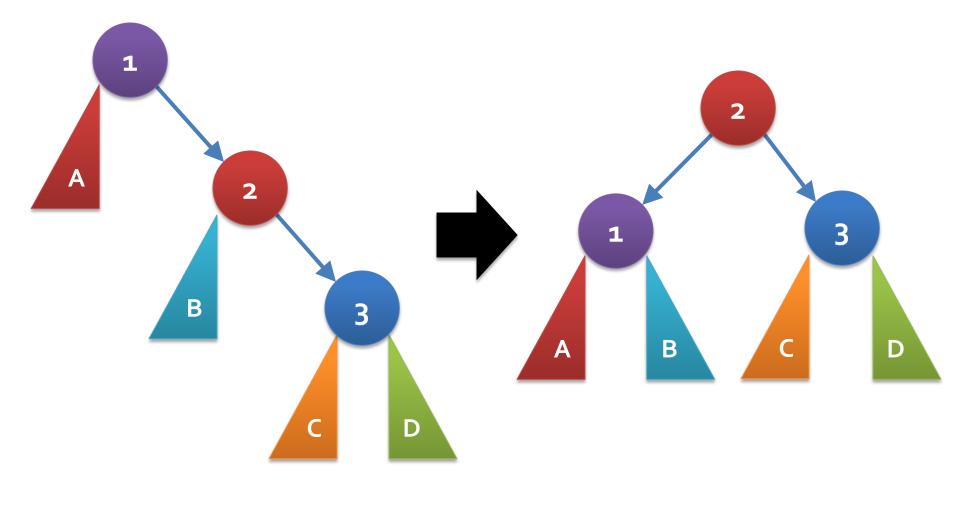
How do we build an AVL tree?

- Carefully.
- Every time we do an add, we have to make sure that the tree is still balanced
- There are 4 cases
 - 1. Left Left
 - 2. Right Right
 - 3. Left Right
 - 4. Right Left

Left Left

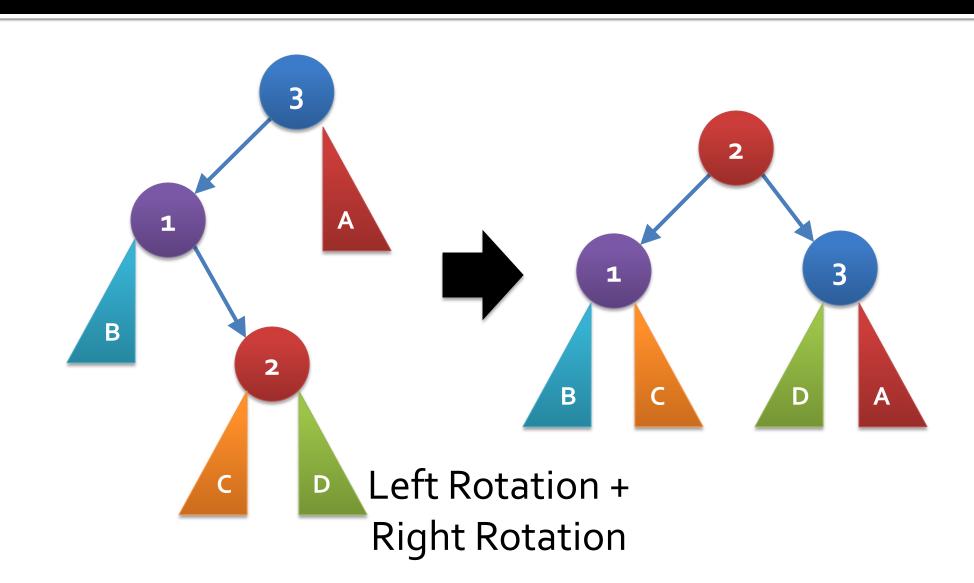


Right Right

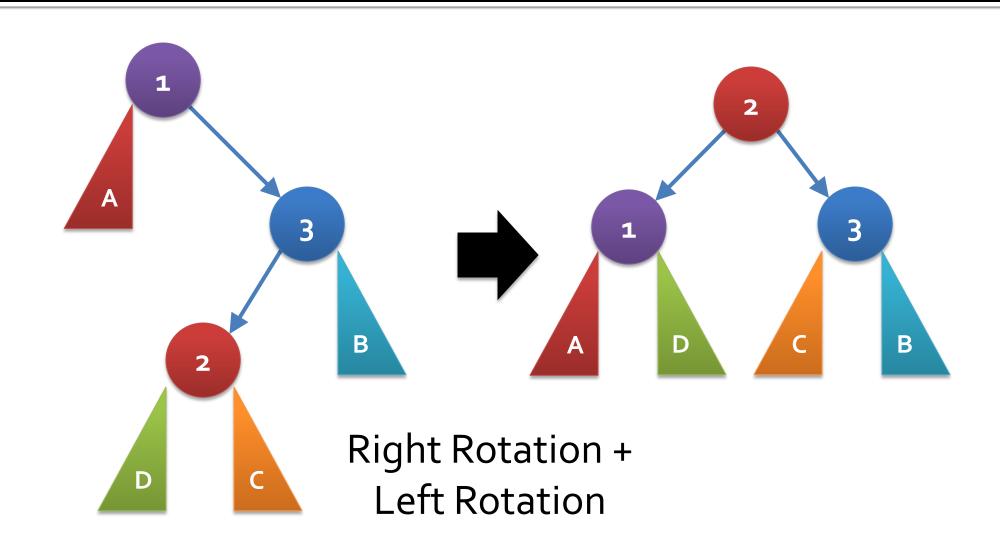


Left Rotation

Left Right



Right Left



Let's make an AVL tree!

Let's just add these numbers in order:

What about these?

Balancing a Tree by Construction

How to make a balanced tree

- What if we knew ahead of time which keys we were going to put into a tree?
- How could we make sure the tree is balanced?
- Answer:
 - Sort the keys
 - Recursively add the keys and values such that the tree stays balanced

Balanced insertion

- Write a recursive method that adds a sorted array of data such that the tree stays balanced
- Assume that an put (int key, Object value) method exists
 - It adds according to the normal BST insertion
- Use the usual convention that start is the beginning of a range and end is the location after the last legal element in the range

```
public void balance(int[] keys, Object[]
values, int start, int end)
```

DSW algorithm

- Takes a potentially unbalanced tree and turns it into a balanced tree
- Step 1
 - Turn the tree into a degenerate tree (backbone or vine) by right rotating any nodes with left children
- Step 2
 - Turn the degenerate tree into a balanced tree by doing sequences of left rotations starting at the root
- The analysis is not obvious, but it takes O(n) total rotations

Which method is best?

- How much time does it take to insert n items with:
 - Red-black or AVL tree
 - Balanced insertion method
 - Unbalanced insertion + DSW rebalance
- How much space does it take to insert n items with:
 - Red-black or AVL tree
 - Balanced insertion method
 - Unbalanced insertion + DSW rebalance

Hash Tables

Recall: Symbol table ADT

- We can define a symbol table ADT with a few essential operations:
 - put(Key key, Value value)
 - Put the key-value pair into the table
 - get(Key key):
 - Retrieve the value associated with key
 - delete(Key key)
 - Remove the value associated with key
 - contains(Key key)
 - See if the table contains a key
 - isEmpty()
 - size()
- It's also useful to be able to iterate over all keys

Unordered symbol table

- We have been talking a lot about trees and other ways to keep ordered symbol tables
- Ordered symbol tables are great, but we may not always need that ordering
- Keeping an unordered symbol table might allow us to improve our running time

Hash tables: motivation

- Balanced binary search trees give us:
 - $\Theta(\log n)$ time to find a key
 - $\Theta(\log n)$ time to do insertions and deletions
- Can we do better?
- What about:
 - $\Theta(1)$ time to find a key
 - \bullet $\Theta(1)$ to do an insertion or a deletion

Hash tables: theory

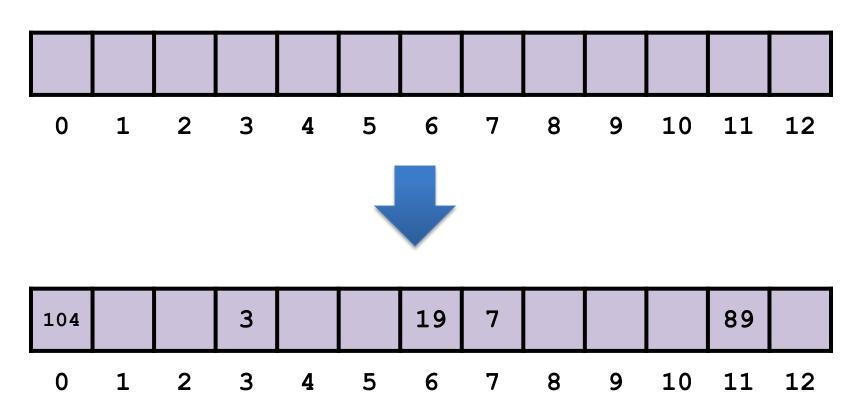
- We make a huge array, so big that we'll have more spaces in the array than we expect data values
- We use a hashing function that maps keys to indexes in the array
- Using the hashing function, we know where to put each key but also where to look for a particular key

Hash table: example

- Let's make a hash table to store integer keys
- Our hash table will be 13 elements long
- Our hashing function will be simply modding each value by 13

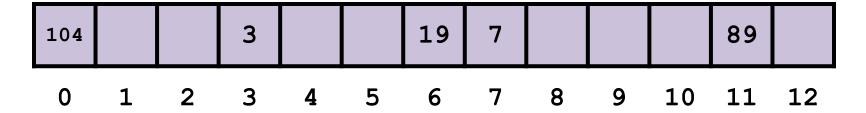
Hash table: example

Insert these keys: 3, 19, 7, 104, 89



Hash table: example

Find these keys:



- **1**9
 - YES!
- **88**
 - NO!
- **1**6
 - NO!

Hash table: issues

- We are using a hash table for a space/time tradeoff
- Lots of space means we can get down to $\Theta(1)$
- How much space do we need?
- How do we pick a good hashing function?
- What happens if two values collide (map to the same location)

Upcoming

Next time...

- Collisions
- Chaining implementation of hash tables
- No class on Monday or Tuesday

Reminders

- Finish Project 2
 - Due tonight by midnight!
- Keep reading Section 3.4
- Have a good break!