
Week 7 - Friday



 What did we talk about last time?
 2-3 trees and red-black tree practice





Infix to Postfix Converter





 Another approach to balancing is the AVL tree
 Named for its inventors G.M. Adelson-Velskii and E.M. Landis
 Invented in 1962

 An AVL tree is better balanced than a red-black tree, but it 
takes more work to keep such a good balance
 It's faster for finds (because of the better balance)
 It's slower for inserts and deletes
 Like a red-black tree, all operations are Θ(log n)



 An AVL tree is a binary search tree where

 The left and right subtrees of the root have heights that differ by at 
most one

 The left and right subtrees are also AVL trees
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 The balance factor of a tree (or subtree) is the height of its 
right subtree minus the height of its left

 In an AVL tree, the balance factor of every subtree is -1, 0, or 
+1

 What's the balance factor of this tree?
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 Carefully.
 Every time we do an add, we have to make sure that the tree 

is still balanced
 There are 4 cases

1. Left Left
2. Right Right
3. Left Right
4. Right Left
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 Let's just add these numbers in order:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 What about these?

7, 24, 92, 32, 2, 57, 67, 84, 66, 75





 What if we knew ahead of time which keys we were going to 
put into a tree?

 How could we make sure the tree is balanced?
 Answer:
 Sort the keys
 Recursively add the keys and values such that the tree stays balanced



 Write a recursive method that adds a sorted array of data such 
that the tree stays balanced

 Assume that an put(int key, Object value)method 
exists
 It adds according  to the normal BST insertion

 Use the usual convention that start is the beginning of a range 
and end is the location after the last legal element in the range

public void balance(int[] keys, Object[] 
values, int start, int end)



 Takes a potentially unbalanced tree and turns it into a 
balanced tree

 Step 1
 Turn the tree into a degenerate tree (backbone or vine) by right 

rotating any nodes with left children
 Step 2
 Turn the degenerate tree into a balanced tree by doing sequences of 

left rotations starting at the root
 The analysis is not obvious, but it takes O(n) total rotations



 How much time does it take to insert n items with:
 Red-black or AVL tree
 Balanced insertion method
 Unbalanced insertion + DSW rebalance

 How much space does it take to insert n items with:
 Red-black or AVL tree
 Balanced insertion method
 Unbalanced insertion + DSW rebalance





 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys



 We have been talking a lot about trees and other ways to keep 
ordered symbol tables

 Ordered symbol tables are great, but we may not always need 
that ordering

 Keeping an unordered symbol table might allow us to improve 
our running time



 Balanced binary search trees give us:
 Θ(log n) time to find a key
 Θ(log n) time to do insertions and deletions

 Can we do better?
 What about:
 Θ(1)  time to find a key
 Θ(1)  to do an insertion or a deletion



 We make a huge array, so big that we'll have more spaces in 
the array than we expect data values

 We use a hashing function that maps keys to indexes in the 
array

 Using the hashing function, we know where to put each key 
but also where to look for a particular key



 Let's make a hash table to store integer keys
 Our hash table will be 13 elements long
 Our hashing function will be simply modding each value by 13



 Insert these keys: 3, 19, 7, 104, 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 Find these keys:

 19
 YES!

 88
 NO!

 16
 NO!

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 We are using a hash table for a space/time tradeoff
 Lots of space means we can get down to Θ(1)
 How much space do we need?
 How do we pick a good hashing function?
 What happens if two values collide (map to the same location)





 Collisions
 Chaining implementation of hash tables
 No class on Monday or Tuesday



 Finish Project 2
 Due tonight by midnight!

 Keep reading Section 3.4
 Have a good break!
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