
Week 7 - Friday

 What did we talk about last time?
 2-3 trees and red-black tree practice

Infix to Postfix Converter

 Another approach to balancing is the AVL tree
 Named for its inventors G.M. Adelson-Velskii and E.M. Landis
 Invented in 1962

 An AVL tree is better balanced than a red-black tree, but it
takes more work to keep such a good balance
 It's faster for finds (because of the better balance)
 It's slower for inserts and deletes
 Like a red-black tree, all operations are Θ(log n)

 An AVL tree is a binary search tree where

 The left and right subtrees of the root have heights that differ by at
most one

 The left and right subtrees are also AVL trees

10

6 14

1 9 17

72 15

 The balance factor of a tree (or subtree) is the height of its
right subtree minus the height of its left

 In an AVL tree, the balance factor of every subtree is -1, 0, or
+1

 What's the balance factor of this tree?

6

1 9

2

 Carefully.
 Every time we do an add, we have to make sure that the tree

is still balanced
 There are 4 cases

1. Left Left
2. Right Right
3. Left Right
4. Right Left

3

2

1

BA

C

D

3

2

1

BA C D

Right Rotation

2

1

B

A

C D

3

3

2

1

BA C D

Left Rotation

3

2

1

B

A

C D

3

2

1

B AC D

Left Rotation +
Right Rotation

2

1

B

A

CD

3 3

2

1

BA CD

Right Rotation +
Left Rotation

 Let's just add these numbers in order:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 What about these?

7, 24, 92, 32, 2, 57, 67, 84, 66, 75

 What if we knew ahead of time which keys we were going to
put into a tree?

 How could we make sure the tree is balanced?
 Answer:
 Sort the keys
 Recursively add the keys and values such that the tree stays balanced

 Write a recursive method that adds a sorted array of data such
that the tree stays balanced

 Assume that an put(int key, Object value)method
exists
 It adds according to the normal BST insertion

 Use the usual convention that start is the beginning of a range
and end is the location after the last legal element in the range

public void balance(int[] keys, Object[]
values, int start, int end)

 Takes a potentially unbalanced tree and turns it into a
balanced tree

 Step 1
 Turn the tree into a degenerate tree (backbone or vine) by right

rotating any nodes with left children
 Step 2
 Turn the degenerate tree into a balanced tree by doing sequences of

left rotations starting at the root
 The analysis is not obvious, but it takes O(n) total rotations

 How much time does it take to insert n items with:
 Red-black or AVL tree
 Balanced insertion method
 Unbalanced insertion + DSW rebalance

 How much space does it take to insert n items with:
 Red-black or AVL tree
 Balanced insertion method
 Unbalanced insertion + DSW rebalance

 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys

 We have been talking a lot about trees and other ways to keep
ordered symbol tables

 Ordered symbol tables are great, but we may not always need
that ordering

 Keeping an unordered symbol table might allow us to improve
our running time

 Balanced binary search trees give us:
 Θ(log n) time to find a key
 Θ(log n) time to do insertions and deletions

 Can we do better?
 What about:
 Θ(1) time to find a key
 Θ(1) to do an insertion or a deletion

 We make a huge array, so big that we'll have more spaces in
the array than we expect data values

 We use a hashing function that maps keys to indexes in the
array

 Using the hashing function, we know where to put each key
but also where to look for a particular key

 Let's make a hash table to store integer keys
 Our hash table will be 13 elements long
 Our hashing function will be simply modding each value by 13

 Insert these keys: 3, 19, 7, 104, 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

 Find these keys:

 19
 YES!

 88
 NO!

 16
 NO!

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

 We are using a hash table for a space/time tradeoff
 Lots of space means we can get down to Θ(1)
 How much space do we need?
 How do we pick a good hashing function?
 What happens if two values collide (map to the same location)

 Collisions
 Chaining implementation of hash tables
 No class on Monday or Tuesday

 Finish Project 2
 Due tonight by midnight!

 Keep reading Section 3.4
 Have a good break!

	COMP 2100
	Last time
	Questions?
	Project 2
	AVL Trees
	AVL trees
	AVL definition
	AVL tree?
	Balance factor
	How do we build an AVL tree?
	Left Left
	Right Right
	Left Right
	Right Left
	Let's make an AVL tree!
	Balancing a Tree by Construction
	How to make a balanced tree
	Balanced insertion
	DSW algorithm
	Which method is best?
	Hash Tables
	Recall: Symbol table ADT
	Unordered symbol table
	Hash tables: motivation
	Hash tables: theory
	Hash table: example
	Hash table: example
	Hash table: example
	Hash table: issues
	Upcoming
	Next time…
	Reminders

